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Knowing thus the Algorithm of this calculus, which I call Differential Calcu-
lus, all differential equations can be solved by a common method {Gottfried
Wilhelm von Leibniz, 1646-1719).

When, several years ago, I saw for the first time an instrument which, when
carried, automatically records the number of steps taken by a pedestrian, it
occurred to me at once that the entire arithmetic could be subjected to a
similar kind of machinery so that not only addition and subtraction, but also
multiplication and division, could be accomplished by a suitably arranged ma-
chine easily, promptly and with sure results.... For it is unworthy of excellent
men to lose hours like slaves in the labour of calculations, which could safely
be left to anyone else if the machine was used.... And now that we may give
final praise to the machine, we may say that it will be desirable to all who
are engaged in computations which, as is well known, are the managers of
financial affairs, the administrators of others estates, merchants, surveyors,
navigators, astronomers, and those connected with any of the crafts that use
mathematics (Leibniz).
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1. Leibniz’s vision

Newton and Leibniz invented calculus in the late 17th century and laid the
foundation for the revolutionary development of science and technology up
to the present day. Already 300 years ago, Leibniz sought to create a ‘mar-
riage’ between calculus and computation, but failed because the calculator
he invented was not sufficiently powerful. However, the invention of the
modern computer in the 1940s started a second revolution and today, we
are experiencing the realization of the original Leibniz vision. A concrete
piece of evidence of the ‘marriage’ is the rapid development and spread of
mathematical software such as Mathematica, Matlab and Maple and the
large number of finite-element codes.

The basic mathematical models of science and engineering take the form
of differential equations, typically expressing laws of physics such as conser-
vation of mass or momentum. By determining the solution of a differential
equation for given data, one may gain information concerning the physi-
cal process being modelled. Exact solutions may sometimes be determined
through symbolic computation by hand or using software, but in most cases
this is not possible, and the alternative is to approximate solutions with
numerical computations using a computer. Often massive computational
effort is needed, but the cost of computation is rapidly decreasing and new
possibilities are quickly being opened. Today, differential equations mod-
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elling complex phenomena in three space dimensions may be solved using
desktop workstations.

As a familiar example of mathematical modelling and numerical solution,
consider weather prediction. Weather forecasting is sometimes based on
solving numerically a system of partial differential equations related to the
Navier—Stokes equations that model the evolution of the atmosphere begin-
ning from initial data obtained from measuring the physical conditions —
temperature, wind speed, etc. — at certain locations. Such forecasts some-
times give reasonably correct predictions but are also often incorrect. The
sources of errors affecting the reliability are data, modelling and compu-
tation. The initial conditions at the start of the computer simulation are
measured only approximately, the set of differential equations in the model
only approximately describe the evolution of the atmosphere, and finally
the differential equations can be solved only approximately. All these con-
tribute to the total error, which may be large. It is essential to be able to
estimate the total error by estimating individually the contributions from
the three sources and to improve the precision where most needed. This
example contains the issues in mathematical modelling that are common to
all applications.

In these notes, we present a framework for the design and analysis of
computational methods for differential equations. The general objective
is to achieve reliable control of the total error in mathematical modelling
including data, modelling and computation errors, while making efficient
use of computational resources. This goal may be achieved using adap-
tive methods with feedback from computations. The framework we de-
scribe is both simple enough to be introduced early in the mathematical
curriculum and general enough to be applied to problems on the frontiers
of research. We see a great advantage in using this framework in a math-
ematics education program. Namely, its simplicity suggests that numerical
methods for differential equations could be introduced even in the calcu-
lus curriculum, in line with the Leibniz idea of combining calculus and
computation. In these notes, we hope to reach a middle ground between
mathematical detail and ease of understanding. In Eriksson, et al. (1994),
we give an even more simplified version aimed at early incorporation in a
general mathematical curriculum. These notes, together with the software
Femlab implementing the adaptive methods for a variety of problems, are
publicly available through the Internet; see below. In the textbook Eriks-
son, et al. (in preparation), we develop the framework in detail and give
applications not only to model problems, but also to a variety of basic prob-
lems in science including, for example, the Navier—Stokes equations for fluid
flow.

We begin by discussing the basic concepts of predictability and com-
putability, which are quantitative measures of the accuracy of prediction
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from the computational solution of a mathematical model consisting of dif-
ferential equations.

In the next part, we present an abstract framework for discretization, er-
ror estimation and adaptive error control. We introduce the fundamental
concepts of the framework: reliability and efficiency, a priori and a posteriori
error estimates, accuracy and stability. We then recall the basic principles
underlying the Galerkin finite-element method (Fem), which we use as a gen-
eral method of discretization for all differential equations. We then describe
the fundamental ingredients of error estimates for Galerkin discretization,
including stability, duality, Galerkin orthogonality and interpolation. We
also discuss data, modelling, quadrature and discrete-solution errors briefly.

In the last part, we apply this framework to a variety of model problems.
We begin by recalling some essential facts from interpolation theory. We
next consider a collection of model problems including stationary as well
as time-dependent, linear and non-linear, ordinary and partial differential
equations. The model problems represent a spectrum of differential equa-
tions including problems of elliptic, parabolic and hyperbolic type, as well
as general systems of ordinary differential equations. In each case, we de-
rive a posteriori and a priori error bounds and then construct an adaptive
algorithm based on feedback from the computation. We present a sample of
computations to illustrate the results. We conclude with references to the
literature and some reflections on future developments and open problems.

2. Computability and predictability

Was man mit Fehlerkontrolle nicht berechnen kann, dariiber muss mann schweigen
(Wittgenstein).

The ability to make predictions from a mathematical model is determined by
the concepts of computability and predictability. We consider a mathematical
model of the form

Au) = f, (2.1)

where A represents a differential operator with specified coefficients (includ-
ing boundary and initial conditions) on some domain, f is given data and u
is the unknown solution. Together, A and f define the mathematical model.
We assume that by numerical and /or symbolic computation an approxima-
tion U of the exact solution u is computed, and we define the computational
error e = u — U. The solution u, and hence U, is subject to perturbations
from the data f and the operator A. Letting the unperturbed form of (2.1)
be

An) = f, (2.2)

with unperturbed operator A, data f and corresponding solution @, we de-
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fine the data-modelling error egn = @ — u. In a typical situation, the unper-
turbed problem (2.2) represents a complete model that is computationally
too complex to allow direct computation, and (2.1) a simplified model that
is actually used in the computation. For example, (2.2) may represent the
full Navier-Stokes equations, and (2.1) a modified Navier—Stokes equations
that is determined by a turbulence model that eliminates scales too small
to be resolved computationally.

We define the total error e as the sum of the data-modelling and compu-
tational errors,

11l

e=t-U=0—ut+u—-U=eqn + e. (2.3)

Basic problems in computational mathematical modelling are: (i) estimate
quantitatively the total error by estimating both the data-modelling error
edm and the computational error e, and (ii) control any components of the
data-modelling and computational errors that can be controlled. Without
some quantitative estimation and even control of the total error, mathemat-
ical modelling loses its meaning.

We define the solution 4 of the unperturbed model (2.2) to be predictable

with respect to a given norm || - || and tolerance TOL > 0 if |leqm|| < TOL.
We define the solution u of the perturbed model (2.1) to be computable
with respect to a given norm || - ||, tolerance TOL and computational work,

if |lec]| < TOL with the given computational work. Note that the choice
of norm depends on how the error is to be measured. For example, the
L? and L™ norms are appropriate for the standard goal of approximating
the values of a solution. Other norms are appropriate if some qualitative
feature of the solution is the goal of approximation. We note that the
predictability of a solution is quantified in terms of the norm || - || and the
tolerance TOL, whereas the computability of a solution is quantified in
terms of the available computational power, the norm || - || and the tolerance
TOL. There is a natural scale for computability for all models, namely,
the level of computing power. The scale for predictablity depends on the
physical situation underlying the model. The relevant level of the tolerance
TOL and the choice of norm depend on the particular application and the
nature of the solution .

A mathematical model with predictable and computable solutions may be
useful since computation with the given model and data may yield relevant
information concerning the phenomenon being modelled.

If the uncertainty in data and/or modelling is too large, individual solu-
tions may effectively be non-predictable, but may still be computable in the
sense that the computational error for each choice of data is below the chosen
tolerance. In such cases, accurate computations on a set of data may give
useful information of a statistical nature. Thus, models with non-predictable
but computable solutions may be considered partially deterministic, that is,
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deterministic from the computational point of view but non-deterministic
from the data-modelling point of view. One may think of weather prediction
again, in which it is not possible to describe the initial state as accurately
as one could enter the data into a computation. Finally, models for which
solutions are non-computable do not seem to be useful from a practical point
of view.

The computational error e. is connected to perturbations arising from
discretization through a certain stability factor S, measuring the sensitivity
of u to perturbations from discretization. The computability of a problem
may be estimated quantitatively in terms of the stability factor S. and a
quantity @) related to the nature of the solution u being computed and the
tolerance level. The basic test for computability reads: if

SexQ<P (2.4)

where P is the available computational power, then the problem is numer-
ically computable, whereas if S; x ¢ > P, then the problem is not com-
putable. In this way we may give the question of numerical computability
a precise quantitative form for a given exact solution, norm, tolerance and
amount of computational power. Note that S. x @) is related to the complex-
ity of computing the solution u, and an uncomputable solution has a very
large stability factor S.. This occurs with pointwise error control of direct
simulation of turbulent flow without turbulence modelling over a long time,
for example.

Similarly, the sensitivity of 4 to data errors may be measured in terms of
a stability factor S4q. If Sq x 6 is sufficiently small, where § measures the
error in the data, then the problem is predictable from the point of view of
data error. In addition, some kind of modelling errors can be associated to
a stability factor Sy, and if Sy, x p is sufficiently small, where p measures
the error in the model, then the problem is predictable from the point of
view of modelling.

Different perturbations propagate and accumulate differently, and this
is reflected in the different stability factors. The various stability factors
are approximated by numerically solving auxiliary linear problems. In the
adaptive algorithms to be given, these auxiliary computations are routinely
carried out as a part of the adaptive algorithm and give critically important
information on perturbation sensitivities.

3. The finite-element method
(Fe)™: Finite elements, For everything, For everyone, ‘For ever’ (m = 4).
Fem is based on

e  Galerkin’s method for discretization,
e  piecewise-polynomial approximation in space, time or space/time.
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In a Galerkin method, the approximate solution is determined as the member
of a specified finite-dimensional space of trial functions for which the residual
error is orthogonal to a specified set of test functions. The residual error, or
simply the residual, is obtained by inserting the approximate solution into
the given differential equation. The residual of the exact solution is zero,
whereas the residual of approximate solutions deviates from zero. Applying
this method for a given set of data leads to a system of equations that is
solved using a computer to produce the approximate solution. In Fem, the
trial and test functions are piecewise polynomials. A piecewise polynomial
is a function that is equal to a polynomial, for example, a linear function,
on each element of a partition of a given domain in space, time or space-
time into subdomains. The subdivision is referred to as a mesh and the
subdomains as elements. In the simplest case, the trial and test space are
the same.

If the trial functions are continuous piecewise polynomials of degree g and
the test functions are continuous or discontinuous, we refer to the resulting
methods as continuous Galerkin or ¢G(g) methods. With discontinuous
piecewise polynomials of degree ¢ in both trial and test space, we obtain
discontinuous Galerkin methods or dG(g) methods.

4. Adaptive computational methods
The goal of the design of any numerical computational method is

o reliability,
. efficiency.

Reliability means that the computational error is controlled on a given tol-
erance level; for instance, the numerical solution is guaranteed to be within
1 per cent of the exact solution at every point. Efficiency means that the
computational work to compute a solution within the given tolerance is
essentially as small as possible.

The computational error of a Fem has three sources:

e  Galerkin discretization,
¢  quadrature,
e  solution of the discrete problem.

The Galerkin discretization error arises because the solution is approximated
by piecewise polynomials. The quadrature error comes from evaluating the
integrals arising in the Galerkin formulation using numerical quadrature,
and the discrete-solution error results from solving the resulting discrete
systems only approximately, using Newton’s method or multigrid methods,
for example. It is natural to seek to balance the contribution to the total
computational error from the three sources.
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To achieve the goals of reliability and efficiency, a computational method
must be adaptive with feedback from the computational process. An adap-
tive method consists of a discretization method together with an adaptive
algorithm. An adaptive algorithm consists of

e a stopping criterion guaranteeing error control to a given tolerance
level,

e a modification strategy in case the stopping criterion is not satisfied.

The adaptive algorithm is used to optimize the computational resources to
achieve both reliability and efficiency. In practice, optimization is performed
by an iterative process, where in each step an approximate solution is com-
puted on a given mesh with piecewise polynomials of a certain degree, a
certain quadrature and a discrete-solution procedure. If the stopping crite-
rion is satisfied, then the approximate solution is accepted. If the stopping
criterion is not satisfied, then a new mesh, polynomial approximation, set
of quadrature points and discrete-solution process are determined through
the modification strategy and the process is continued. To start the proce-
dure, a coarse mesh, low-order piecewise-polynomial approximation, set of
quadrature points and discrete-solution procedure are needed.

Feedback is centrally important to the optimization process. The feedback
is provided by the computational information used in the stopping criteria
and the modification strategy.

We now consider the Galerkin discretization error. Adaptive control of
this error is built on error estimates. The control of quadrature and discrete-
solution errors is largely parallel, but each error has its own special features
to be taken into account.

5. General framework for analysis of Fem
5.1. Error estimates

Error estimates for Galerkin discretizations come in two forms:

° a priori error estimates,
) a posteriori error estimates.

An a priori estimate relates the error between the exact and the approxi-
mate solution to the regularity properties of the exact (unknown) solution.
In an a posteriori estimate, the error is related to the regularity of the ap-
proximation.

The basic concepts underlying error estimates are

e accuracy,
o stability.
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Accuracy is a measure of the level of the discretization at each point of the
domain, while stability is a measure of the degree to which discretization
errors throughout the domain interact and accumulate to form the total
error. These properties enter in different forms in the a posteriori and a priori
error estimates. The a posteriori version may be expressed conceptually as
follows:

small residual + stability of the continuous problem = small error, (5.1)

where the continuous problem refers to the given differential equation. The
a priori version takes the conceptual form

small interpolation error + stability of the discrete problem == small error,

(5.2)
where the interpolation error is the difference between the exact solution
and a piecewise polynomial in the Fem space that interpolates the exact
solution in some fashion. Note that the a posteriori error estimate involves
the stability of the continuous problem and the a priori estimate the stability
of the discrete problem. We see that accuracy is connected to the size of
the residual in the a posteriori case, and to the interpolation error in the a
priori case.

Both the residual and the interpolation error contribute to the total error
in the Galerkin solution. The concept of stability measures the accumu-
lation of the contributions and is therefore fundamental. The stability is
measured by a multiplicative stability factor. The size of this factor re-
flects the computational difficulty of the problem. If the stability factor is
large, then the problem is sensitive to perturbations from the Galerkin dis-
cretization and more computational work is needed to reach a certain error
tolerance.

In general, there is a trade-off between the norms used to measure stabil-
ity and accuracy, that is, using a stronger norm to measure stability allows
a weaker norm to be used to measure accuracy. The goal is to balance
the measurements of stability and accuracy to obtain the smallest possi-
ble bound on the error. The appropriate stability concept for Galerkin
discretization methods on many problems is referred to as strong stability
because the norms used to measure stability involve derivatives. Strong
stability is possible because of the orthogonality built into the Galerkin dis-
cretization. For some problems, Galerkin’s method needs modification to
enhance stability.

The stopping criterion is based solely on the a posteriori error estimate.
The modification strategy, in addition, may build on a priori error estimates.
The adaptive feature comes from the information gained through computed
solutions.
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5.2. A posteriori error estimates

The ingredients of the proofs of a posteriori error estimates for Galerkin
discretization are:

1 Representation of the error in terms of the residual of the finite-element

solution and the solution of a continuous (linearized) dual problem.
2 Use of Galerkin orthogonality.
3  Local interpolation estimates for the dual solution.
4  Strong-stability estimates for the continuous dual problem.

We describe (1)—(4) in an abstract situation for a symbolic linear problem
of the form

Au = f, (5.3)
where A: V — V is a given linear operator on V, a Hilbert space with inner
product (-,-) and corresponding norm || - ||, and f € V is given data. The

corresponding Galerkin problem is: find U € V}, such that
(AU,v) = (f,v), Yv € WV,

where V}, C V is a finite-element space. In many cases, V = L?(Q), where
2 is a domain in R". Welet e=u—U.

1 Error representation via a dual problem:
lell* = (e,€) = (e, A*0) = (4e,¢) = (f — AU, 9) = —~(R(U), ¥),

where ¢ solves the dual problem

A*p =,
with A* denoting the adjoint of A, and R(U) is the residual defined by
R(U)= AU — f.

2 Galerkin orthogonality: Since (Ae,v) = —(R(U),v) =0, Yv €V},

lelf* = —(R(U), » — mhp),

where mpp € V;, is an interpolant of .
3  Interpolation estimate:

1R (¢ — mhe)|| < Ci|| DPepl],

where C; is an interpolation constant, h is a measure of the size of
the discretization and D?¢ denotes derivatives of order 3 of the dual
solution . Such estimates follow from classical interpolation theory

when the solution is smooth.
4  Strong-stability estimate for the dual continuous problem:

IDP¢| < Scllell,

where S; is a strong-stability factor.
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Combining (1)—(4), we obtain
lell* = (RU), mhe — ¢) <SGl R lel],
which gives the following a posteriori error estimate
lu — Ul < SGillR° R (5.4)

The indicated framework for deriving a posteriori error estimates for
Galerkin methods is very general. In particular, it extends to problems
A(u) = f, where A is a nonlinear operator. In such a case, the operator
A* in the dual problem is the adjoint of the Fréchet derivative of A (lin-
earized form of A) evaluated between u and U. Details are given below in
the context of systems of nonlinear ordinary differential equations.

5.83. A priori error estimates
Proofs of a priori error estimates have similar ingredients:

1  Representation of the error in terms of the exact solution and a discrete
linearized dual problem.

2 Use of Galerkin orthogonality to introduce the interpolation error in
the error representation.

3  Local estimates for the interpolation error.

4  Strong-stability estimates for the discrete dual problem.

We give more details for the above abstract case.
1 Error representation via a discrete dual problem:
lenll® = (en, en) = (en, A*or) = (Aen, @),

where e, = mpu— U, for mpu an interpolant of u in Vj, and the discrete
dual problem with solution ¢}, € V}, is defined by

(v, A*pp) = (v,ex), Vv € V.
2 Galerkin orthogonality: Using (Ae,v) =0, Vv € V},, gives
leall® = (A(mnu = U), on) = (mhu — u, A*pp).
3  Interpolation estimate:
lu — mhull < Gi||A*D%ul|,

where (] is an interpolation constant.
4  Strong-stability estimate for the discrete dual problem:

| A*@nll < Senllenll,

where S j, is discrete strong-stability factor.
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Combining (1)—(4), we get an a priori error estimate:
lu—Ull < Ci(Sep + 1)[|A*D%. (5.5)

The interplay between the ‘strong’ norm, used in the strong stability involv-
ing A*, and the corresponding ‘weak’ norm, used to estimate the interpola-
tion error, is crucial.

Note that the stability of a continuous dual problem is used in the a
posteriori error analysis whereas the stability of a discrete dual problem is
used to prove the a priori error estimate. In both cases, the stability of the
dual problems reflect the error accumulation and propagation properties of
the discretization procedure.

5.4. Adaptive algorithms

Suppose the computational goal is to determine an approximate solution U
such that ||u — U] < TOL, where TOL is a given tolerance. The corre-
sponding stopping criterion reads:

S.Cil|lh*R(U)| < TOL, (5.6)

which guarantees the desired error control via the a posteriori error estimate
(5.4). The strategy of adaptive error control can be posed as a constrained
nonlinear optimization problem: compute an approximation U satisfying
(5.6) with minimal computational effort. In the case of Galerkin discretiza-
tion, the control parameters are the local mesh size h and the local degree
of the piecewise polynomials ¢ and we seek h and ¢ that minimize compu-
tational effort. We solve this problem iteratively, where the modification
strategy indicates how to compute an improved iterate from the current
iterate. The modification strategy is based on both the a posteriori error
estimate (5.4) and the a priori error estimate (5.5). The mesh modification
itself requires a mesh generator capable of generating a mesh with given
mesh sizes. Mesh modification may also involve stretching and orientating
the mesh. Such mesh generators in two and three dimensions are available
today.

Adaptive algorithms using (5.6) as stopping criterion are reliable in the
sense that by (5.4) the error control ||u — U|| < TOL is guaranteed. The
efficiency of the adaptive algorithm depends on the quality of the mesh-
modification strategy.

5.5. The stability factors and interpolation constants

The stability factor S; and the interpolation constant C; in the a posteriori
error estimate defining the stopping criterion have to be computed to give
the error control a quantitative meaning.
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The stability factor S. depends in general on the particular solution be-
ing approximated, since it is defined in terms of the linearized continuous
dual problem. In some cases, all solutions have the same stability factors.
For example, for typical elliptic problems with analysis in the energy norm,
Sc = Scn = 1 with a suitable definition of norms. In general, this is not
true. Analytic upper bounds on S. often are too crude to be useful for
quantitative error control. Hence, in the adaptive algorithms the stability
factors S. are approximated by solving the linearized continuous dual prob-
lem numerically. The amount of work required to compute S. with sufficient
accuracy is problem and solution dependent and depends on the degree of
reliability desired. For complex problems, complete reliability cannot be
reached, but the degree of reliability may be increased by spending more on
the computation of the S..

The interpolation constants C; depend on the shape of the elements, the
local order of the polynomial approximation and the choice of norms, but
not on the particular solution being approximated or the mesh size. Bounds
for the interpolation constants Cj may be determined analytically or numer-
ically from interpolation theory. Alternatively, once stability factors have
been computed, the interpolation constants may be determined through cal-
ibration by numerically solving problems with known exact solutions.

5.6. Error estimates for quadrature, discrete-solution, data and modelling
errors

A posteriori estimates of quadrature, discrete-solution and data-modelling
errors are performed in a similar fashion to the analysis of the Galerkin-
discretization error. The key difference is due to the fact that different
perturbations accumulate at different rates. In particular, perturbations
satisfying an orthogonality relation are connected to strong stability. For
example, orthogonality is the basis of the Galerkin discretization and multi-
grid methods for discrete solutions. In general, weak stability must be used.
A typical weak-stability estimate for the dual continuous problem takes the
form

lell < Sellell,

where the dual solution ¢ is estimated in terms of the data e and the weak-
stability factor. The corresponding a posteriori error estimate takes the
form

lu = Ull < SGilIRU)]. (5.7)

Note that the factor h® that resulted from the use of strong stability is
missing.
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6. Piecewise-polynomial approximation

In this section, we review results on piecewise-polynomial interpolation that
are used below. For the sake of simplicity, we limit ourselves to discontinuous
piecewise-constant approximation and continuous piecewise-linear approxi-
mation on an interval I = (a,b) in space or time. Higher-order results are
similar. Two-dimensional analogues are given below.

Assuming first that I = (0, 1) is a space interval, let 0 = ¢ < 71 < 72 <
-+ < pm+1 = 1 be a subdivision of I into subintervals I; = (z;-1,z;) of
length h; = x; —x;_1. We use the notation T}, = {I;} for the corresponding
mesh and define its mesh function h(z) by h(z) = h; for z in I;.

We also consider the situation in which I is a time interval, for example,
I = (0,00). In this case, the mesh is given by a sequence of discrete time
levels 0 = ¢y < &1 < --- < ¢, < ---, with corresponding time intervals
I, = (tp—1,ty), time steps k, = t, — t,—1 and mesh function k(t) defined by
k(t) = k, for t in I,. We denote the corresponding mesh by 7. '

We let W}, denote the space of discontinuous piecewise-constant functions
v = v(z) on I, that is, v is constant on each subinterval I;. We define the
interpolant mpv € Wy, of an integrable function v by

/I,(U — mpv)dz = 0, (6.1)

that is,
TRY = hlj : v(z)dz on I; (6.2)
is the average of v on each element. It is easy to show that for 1 < p < oo,
lv = mhollp < ||h0'[|p, (6.3)

where || - ||, denotes the usual LP(I) norm.

We let V}, denote the space of functions that are continuous on I and linear
on each subinterval I, j = 1,..., M + 1. We denote by V,? the subspace of
functions v € V}, satisfying v(0) = v(1) = 0. For a continuous function v on
I, we define the nodal interpolant v in V;, by

mo(z;) = v(xj), j=0,...,M+1. (6.4)
Then, there are constants C} ; such that for 1 < p < oo,
1h™2(v = mho)llp < Ciallv”|lp, (6.5)
1h=(v = 70 lp < Ci2llv'llp, (6.6)
1A~ (v = mro)'llp < Ciallv”llp. (6.7)

Remark 1 The interpolation constants Cj have the values 1/8, 1 and
1/2 for k = 1,2, 3 respectively.
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Remark 2 Below, we use weighted L? norms. Given a continuous positive
function a(r), a weighted L? norm is defined by

I+ lla = IVa()ll2-

The interpolation results (6.3), (6.5)—(6.7) hold in the weighted norm with
C; depending on max; (maxy; a/ miny, a).

7. An elliptic model problem in one dimension

As a model case, we consider a two-point boundary-value problem: find u(z)
such that
—(a(z)) + b(zx)u' + c(z)u = f(z), zelI=(0,1),
uw(0) = 0, u(l)=0,

where a(z), b(z) and ¢(z) are given coefficients with a(z) > 0, and f = f(z)
is a given source term. This is a model for a stationary diffusion—convection—
absorption process in one dimension. If |b|/a is not large, then this problem
has elliptic character, while if |b|/a is large then the character is hyperbolic.
We first consider the elliptic case with b = 0 for simplicity, and comment on
the hyperbolic case with |b|/a large in Remark 3 below.

In the elliptic case, we first assume ¢ = 0. The variational formulation of
(7.1) with b = ¢ = 0, resulting from integration by parts, takes the form

(7.1)

/WWM=/mm,Wew. (7.2)
I I
The ¢G(1) method for (7.1) reads: find U € V)0 such that
/ U dz = / fodz, Voe V. (7.3)
I I

This expresses the Galerkin orthogonality condition on the residual error
which is apparent upon subtracting (7.3) from (7.2) to obtain

/Mu—UWhh:O,VvGWﬂ (7.4)
I

Representing the finite-element solution as
M
Uz) = _&p;(x), (7.5)
j=1

where {¢; inl is the set of basis functions associated with the interior nodes,
we find that (7.3) is equivalent to a matrix equation for the vector £ = (§;):

Af = b, (7.6)

where A = (a;;) is the M x M stiffness matrix with coefficients

aij = /Ia<p;~<p2 dz, (7.7)
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and b = (b;) is the load vector with elements

by = /1 foida. (7.8)

The system matrix A is positive definite and tridiagonal and is easily solved
by Gaussian elimination to give the approximate solution U.

The basic issue is the size of the error u—U. We first prove an a posteriori
error estimate and then an a priori error estimate.

7.1. A posteriori error estimate in the energy norm

We prove an a posteriori estimate of the error e = u — U in the energy norm
Il - | g defined for functions v with v(0) = v(1) =0 by

Hﬂb=”ﬂhz(ﬁdd?m)%

Using Galerkin orthogonality (7.3) by choosing v = mhe € V), we obtain the
error representation:

|€')|2 = [rae’e’dz = f;auv'e’dz — [;aU’e'dz = [; fedz — [;aU’¢' dz
flf(e—whe)dx—fIaU (e — mhe) dz
= [; fle—mpe)dz — M Ji, aU'(e — mhe)’ da.

(7.9)
In this case, the solution of the dual problem is the error itself. We integrate
by parts over each subinterval I; in the last term, and use the fact that all
the boundary terms disappear, to get

€12 = [ RW)(e = me)da < ARW)Iy 1A (e = mae)lle,

where R(U) is the residual defined on each subinterval I; by
RU) = f + (aU'Y.

Recalling (6.6) for the weighted L? norm, one proves:

Theorem 1 The finite-element solution U satisfies

lv — Ulle < GillhR(U))] 1. (7.10)

7.2. An adaptive algorithm

We design an adaptive algorithm for automatic control of the energy-norm
error ||u — Ul|g using the a posteriori error estimate (7.10) as follows:

1 Choose an initial mesh T} o) of mesh size h(®,
2 Compute the corresponding cG(1) finite-element solution U©®) in Vj,).
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3 Given a computed solution U™~ in V}(m—1) on a mesh with mesh size
rm=1) stop if

Ci||R™ Y R(U™1)||, < TOL. (7.11)

o=

4  If not, determine a new mesh T} (m-1y with mesh function R(m=1) of
maximal size such that

Ci|WmYRW™D)||, = TOL (7.12)
and continue.

We note that (7.11) is the stopping criterion and (7.12) defines the mesh-
modification strategy. By Theorem 1, it follows that the error ||u — U||g is
controlled to the tolerance TOL if the stopping criterion (7.11) is reached
with U = U(™~1), The relation (7.12) defines the new mesh size h(™~1) by
maximality, that is, we seek a mesh function h(™~1) as large as possible (to
maintain efficiency) such that (7.12) holds. In general, maximality in || - || is
obtained by the ‘equidistribution’ of error such that the error contributions
from the individual intervals I; are kept equal.
Equidistribution of the error results in the equation

a(z;) " (™| RO ™D

21 (m) _
J )hj -

”LooI](_m)
(7.13)

where N(™ is the number of intervals in T, my. The equation reflects the
fact that the total error is given by the sum of the errors from each in-
terval, and so the error on each interval must be a fraction of the total
er1Eor. %n practice, this nonlinear equation is simplified by replacing N(™) by
N(m—1),

Example 1. Consider problem (7.1) with a(z) =z +¢,e=001,b=c=0
and f(z) = 1. Because the diffusion coefficient a is small near z = 0,
the solution u and its derivatives u' and u” there change rapidly with x;
see Figure la. To compute u, we use the code Femlab which contains an
implementation of the adaptive algorithm just described. Figure 1b shows
the residual R(U) of the computed solution U, and Figure 1c shows, the local
mesh size h(z) when the stopping criterion with TOL = 0.05 was reached.
Note that the mesh size is small near £ = 0 where the residual is large.

7.3. A priori error estimate in the energy norm

We now prove an a priori energy-norm error estimate for (7.3) by comparing
the Galerkin-discretization error to the interpolation error. Using Galerkin
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Fig. 1. Solution, residual and mesh size for Example 1

orthogonality (7.4) with v = U — mpu, we obtain

[ atu=-0Y(-0Y o = [ a(u-0) (u-mp) do < ' ~U'all(u =1 o
I I

SO
o' = U'lla < [1(w = mhu)lla (7.14)
This shows that the Galerkin approximation is optimal because its error in

the energy norm is less than the error of the interpolant. Together with
(6.7), this proves:

Theorem 2 The finite-element solution U satisfies
|l — U)o < Cil|hu"||q- (7.15)
Remark 3 It is easy to show that

CilhRR(U)||1 < CCil|hu"|la,

1
with C a constant depending on a, indicating that the a posteriori energy
error estimate is optimal in the same sense as the a priori estimate.

7.4. A posteriori error estimate in the L? norm

We prove an a posteriori error estimate in the L?-norm, allowing the ab-
sorption coefficient ¢ in (7.1) to be nonzero. The extension of (7.3) to this
case is direct by including [; cUv dz on the left-hand side. We introduce the
dual problem

—(a¢’) +cp e, el

p(0) = 0, ¢(1)=0, (7.16)
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which takes the same form as the original problem (7.1). We use Galerkin
orthogonality (7.3), by choosing v = mpe € V)2, to get

leld = [ e(—(ag’) + ) dz = fy(ac's! + cep) da
= [ilau'¢' + cup)dz - [;(aU'¢’ + cUyp) dx
= [;fedr— [{(aU'¢' +cUyp)dx
= i flo—mp)dz — X [1 (aU' (¢ — mrp) + U (p — mryp)) da.
We now integrate by parts over each subinterval I;, using the fact that all
the boundary terms disappear, to get

llell3 < IR*RU)2lh~2(¢ — mhp) 2,

where R(U) = f+ (aU’)’ + cU on each subinterval. Using (6.3) and defining
the strong-stability factor S; by

[1¥gll2
= , 7.17
°= 28 Tl (717
where v, satisfies
_ IAY; —
(awg) + ng g, S Ia (718)

¥4(0)

07 ’¢g(1) = 07

we obtain:
Theorem 3 The finite-element solution U satisfies
[u—Ullz < ScCil|[R*R(U) 2. (7.19)

Example 2. In Figure 2a, we plot the computed solution in the case a =
001, ¢ = 1 and f(x) = 1/x with L? error control based on (7.19) with
TOL = .01. The residual and mesh size are plotted in Figures 2b and 2c.
In this example, there are two sources of singularities in the solution. First,
because the diffusion coefficient a is small, the solution may have boundary
layers; second, the source term f is large near z = 0. The singularity in
the data f enters only through the residual, while the smallness of a enters
both through the residual and through the stability factor S.. The adaptive
algorithm computes the stability factor S by solving the dual problem (7.16)
with e replaced by an approximation obtained by subtracting approximate
solutions on two different grids. In this example, S. ~ 37.

7.5. A priori error estimate in the L? norm

We now prove an a priori error estimate in the L? norm, assuming for
simplicity that the mesh size h is constant and that ¢ = 0.

Theorem 4 The finite-element solution U satisfies

lu — Ull2 < CiScl|h(u = UY'll2 < CilSellh*u” 2, (7.20)
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Fig. 2. Approximation, residual and mesh size for Example 2

where Sc = maxger2(r) |¥gla/llgll2, with 1, satisfying (7.18).
Proof. By (7.4) and (6.7), for ¢ satisfying (7.16) with ¢ = 0, we have

lell3 = Jrae'¢'dz = [rae'(p — mhp) da
< lIhe'llallh™ (e = mp)lla < Cillhe'llall"la-

The proof is finished by noting that multiplying the energy-norm error esti-
mate by h gives

|he|la < CillA%u” || (7.21)

O

This estimate generalizes to the case of variable h assuming that the mesh
size h does not change too rapidly from one element to the next, (cf. Eriksson
(1994)).

7.6. Data and modelling errors

We make an a posteriori estimate of data and modelling errors. Suppose
that a(z) and f(z) in (7.3) are approximations of the correct coefficient a(x)
and data f(z) and let @& be the corresponding correct solution. We seek an
a posteriori error estimate of the total error é = 4 — U including Galerkin-
discretization, data and modelling errors. We start from a modified form of
the error representation (7.9),

M+1

I(a—-UY|2 = /If(é—vrhé)d:c— Z/IaU’(é—m,é)’dx
i=1 9L

M+1

+/(f—f)édx— 3 / (@ — a)U'¢ do
1 =
I+1I-1II,
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with the obvious definition of I, IT and III. The first term I is estimated
as above. For the new term 111, we have

11 < Gil|(a - a)U'|| 1 [|€/[la-
Similarly, integration by parts gives

II<|IF = Fliile'lla,

where F/ = f, I = f and F(0) = F(0) = 0. Altogether, we obtain:
Theorem 5 The finite-element solution U satisfies
I ~U'lla < GUIRR@) |3 +IF ~ Flly + |G- a)U']3).  (7:22)

An adaptive algorithm for control of both Galerkin and data-modelling
errors can be based on (7.22). It is natural to assume that ||é — allec < p
or ||(@ — a)a |l < u, corresponding to an absolute or relative error in &
on the level 4. In the first case, we obtain ||(a — a)U'|| 1 < u||U’|| 1, and in

the second case, ||(a — a)U'||1 < pl|U'||la. ©is supphed by the user while

the relevant norm on U is computed by the program. For example, for the
problem in Example 2 we find that ||U’||1 = 13.3531 while ||U’||; = 0.5406.

Remark 4 If |b]/a is large then the problem (7.1) has a hyperbolic char-
acter. If a < h then a modified Galerkin method with improved stability
properties is used which is called the streamline diffusion method. The mod-
ifications consist of a weighted least-squares stabilization that gives extra
control of the residual R(U) and a modification of the viscosity coefficient
a. L? error estimates for this method are derived similarly to the case with
b= 0. The resulting L? a posteriori error estimate has essentially the form
(7.19), where the stability constant S; contains a dependence on the viscos-
ity a. In the generic case with a constant, we have S; ~ >. The result of

using strong stability and Galerkin orthogonality is a factor 7 coupled with
the residual R(U). In a direct approach that uses weak stability, the result
does not contain the factor : Thus, an improvement results if a > h2. In
particular, if a > h then the standard unmodified Galerkin method may be
used and the above analysis applies. The condition a > h may be satisfied
on the last mesh in the sequence of meshes used in the adaptive process.
In this case, the streamline diffusion modification is used only on the initial
coarse meshes. Details of this extension to hyperbolic convection—diffusion
problems are given in Eriksson and Johnson (1993), (to appear).

Example 3. Consider problem (7.1) with a(z) = 0.02, b(z) =1, ¢(x) =0
and f(z) = 1. In Figure 3, we plot the computed solution together with the
residual and mesh size obtained using an adaptive algorithm based on an
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Fig. 3. Solution, residual and mesh size for Example 3

a posteriori error estimate of the form (7.19) with TOL = .02. Notice the
singularity in » in the boundary layer near x = 1.

8. Basic time-dependent model problems

As a first example, we consider the scalar linear initial-value problem: find
u = u(t) such that

u+al)u = f(t), t>0,
u0) = o, 51
where a(t) is a given coefficient, f(t) is a given source term and v’ = % now
denotes the time derivative of v. The exact solution u(t) is given by the

formula

t
u(t) = e A0y + / e~ (A=A £(4) ds, (8.2)
0

where A’ = a and A(0) = 0, from which we can draw some conclusions
about the dependence of u on a. In general, the exponential factors may
become large with time. However, if a(t) > 0 for all ¢, then A(t) > 0 and
A(t) — A(s) > 0 for all t > s, and both ug and f are multiplied by quan-
tities that are less than or equal to one. We shall see that if a(t) > 0,
then Galerkin-discretization errors accumulate in such a way that accurate
long-time computation is possible. The problem (8.1) with a(t) > 0 is a
model for a class of parabolic problems that includes generalizations of (8.1)
with the coefficient a replaced by —V - (V) with a > 0. The analysis for
the case a > 0 allowing long-time integration without error accumulation
extends directly to this more complex case.

For the sake of simplicity, we consider the dG(0) method, which reads:
find U in W}, such that for all polynomials v of degree 0 on I,

/ (' + a(t)U)vdt + [Un_a]vi, = / fudt, (8.3)
In In

where [v,] = (v} —v;;), v = lims_ 10 v(tn+ ) and Uy = ug. We note that
(8.3) says that the ‘sum’ of the residual U] +a(t)U — f in I,,, and the ‘jump’
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[Un—1] is orthogonal to all discrete test functions. Since U is a constant on
I,,U =0on I,.

If U,, denotes the constant value of U on the time interval I,,, then the
dG(0) method (8.3) satisfies

Un—Un_1+Un/adt= fdt, n=1,2,..., (8.4)
In I,

where Uy = ug. The classical backward Euler method is thus the dG(0)
method with the rectangle rule applied to the integrals. We assume that
if a(t) is negative, then the time step is small enough that | f; adt| <
1, in which case (8.4) defines U, uniquely. We use the notation ||v||; =
max,e(o,7] |v(t)], where I = (0,T) is a given time interval.

8.1. An a posteriori error estimate

To derive an a posteriori error estimate for the error ey = u(ty) — Un,
N > 1, we introduce the continuous dual ‘backward’ problem,

-’ +alt)p = 0, te(0,tn),

oltn) = en, (8.5)

with solution given by ¢(t) = eA®~AltN)ey . Integration by parts over each
subinterval I, gives

ek = e+ XN, [ e(—¢ +ap)dt
Yoet Jr, (€ +ae)pdt + 3 5 enlol + (wo — U )wg  (8.6)
= Eﬁ:l(fln(f —alU)pdt — [Un1]ey_1),

where in the last step we use the facts that U’ = 0 on each I, and Uy = up.
Now we use Galerkin orthogonality (8.3) by taking v = mp with

/(cp—mcgo)dt=0, n=1,...,N,
I

n

to obtain the error representation formula:
N

= ([ (7 -al)e - me)dt = Wacsllo —melit ).

n=1 n
Using (6.3), we obtain
& < o™ 1¢'|dt maxp—y,.. N([[Un-1)l + [K(f — aU)llr,) 8.7)
< Se(tN)([Un-a]l + [[K(f — aU)ll1,) len],
where S.(tx) is the stability factor defined by

s ot ®8)
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To complete the proof of the a posteriori error estimate, we need to es-
timate Sq(tn). The following lemma presents such a stability estimate in
both the general case and the dissipative case when a(t) > 0 for all t. We
also state an estimate for ¢ itself.

Lemma 1 If |a(t)| < A for t € (0,tn), then ¢ satisfies for all t € (0,tn):

lo(t)] < exp(Atn)len, (8.9)
and
Sc(tn) < Aty exp(Aty). (8.10)
If a(t) > 0 for all ¢, then ¢ satisfies for all t € (0,ty):
le@)] < len, (8.11)
and
Se(tn) < 1. (8.12)

Proof. The first and second estimates follow from the boundedness as-
sumption on a. The third estimate follows from the fact that A(ty) — A(t)
is non-negative for ¢ < ty. Further, since a is non-negative,

Jrl€'ldt = |en| J; a(t) exp(A(tn) — A(t))dt
= len|(1 - exp(A(0) - A(tn))) < len],

which completes the proof. O

We insert the strong-stability estimates (8.10) or (8.12) into (8.7) and obtain
the a posteriori error estimate:

Theorem 6 The finite-element solution U satisfies for N =1,2,...
lu(tn) — Un| < Sc(tn)|kR(U)|0,t5)
where
_ |Un - Un—1|

RU) = "2 4 |f ~aUlp,, teln
n

8.2. An a priori error estimate
The a priori error estimate for (8.3) reads as follows:

Theorem 7 If |a(t)] < A for all ¢, then there is a constant C > 0 such
that U satisfies for N =1,2,....

lu(tn) — Un| < Cty exp(CAty)kd'|],
and if a(t) > 0 for all ¢, then for N =1,2,...,
[u(tn) = Un < [0 (813)



INTRODUCTION TO ADAPTIVE METHODS FOR DIFFERENTIAL EQUATIONS 129

We note the optimal nature of the estimate compared to interpolation in
the case a(t) > 0.

Proof. We introduce the discrete dual backward problem: find & € W,
such that forn=N,N —1,...,1,

/ (=@ + a(t)®)vdt — [B,)v; =0, Vv e Wy, (8.14)
I

where ®% = (mpu — U)y. It suffices to estimate the ‘discrete’ error & =
mru — U in Wy, since u — mpu is already known. With the choice v = é,
the Galerkin orthogonality allows U to be replaced by u and we obtain the
following representation:

N N-1
lexl? = Z/I (—®' +a(t)®)edt — > [Pn)e, + Pyey
n=1v"" n=1

N
= nz::l/ln(—é + a(t)®)(mpu — u)dt

N-1
= S [@n(mru — w)y + Dy (meu — u)y
n=1

N-1
= - /I(aq)(u — mpu))dt + Z [@n](u — mru), — Py(u — mu)y,

n=1

where we use ® = 0 on each time interval. Recalling (6.3), we get the desired
result follows from a lemma expressing the weak and strong stability of the
discrete dual problem (8.14). O

Lemma 2 When |a(t)| < A for all ¢, then there is a constant C' > 0 such
that the solution of the discrete dual problem (8.14) satisfies

|, | < exp(CAtN)|ey], (8.15)

N-1
Z |[®n]| < CAty exp(CALN)|EN|, (8.16)

n=1

N

) / al@nldtl < CAty exp(CALN) R, (8.17)

n=1 n

If a(t) > 0 for all t, then
19, ] < lexl, (8.18)

N-1
> @l < lewl, (8.19)
n=1
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N

>

n=1

Proof. The discrete dual problem (8.14) takes the form

/In al@nldt’ < lexl (8.20)

—<1>n+1+q>n+q>n/ a)dt = 0, n=N,N—1,...,1,
In
q)N+l = é]_\/a
where ®,, denotes the value of ® on I,, so
N

-1

o, = H(l +/ adt) Dy
j=n L

In the case where a is bounded, the results follow from standard estimates.

When a is nonnegative, this proves (8.18) immediately. To prove (8.19), we

assume without loss of generality that ®y4 is positive, so the sequence &,

decreases when n decreases, and

N N
Z (@] = Z[(I)n] =®ns1— D1 < PN
n=1 n=1

Finally, (8.20) follows from the discrete equation. O

We note that the a priori error estimate (8.13) is optimal compared to
interpolation in the case a > 0.

Remark 5 It is important to compare the general results of Theorem 6
and Theorem 8.13, when a is only known to be bounded, to the result for
dissipative problems with a > 0. In the first case, the errors can accumulate
at an ‘exponential’ rate, and, depending on A, S.(ty) can become so large
that controlling the error is no longer possible. In the case a > 0, there is no
accumulation of error so accurate computation is possible over arbitrarily
long times. Note that we do not require a(t) to be positive and bounded
away from zero; it is enough to assume that a is non-negative.

Example 4. Consider the dissipative problem v + u = sint, u(0) = 1
with solution u(t) = 1.5e™* + .5(sint — cost). We compute with dG(0) and
plot the solution and the approximation in Figure 4a. The approximation is
computed with an error tolerance of .001. In Figure 4b, we plot S.(t) versus
time. Note that S;(¢) tends to 1 as ¢ increases, indicating that the numerical
error does not grow significantly with time, and accurate computations can
be made over arbitrarily long time intervals.

Example 5. We now consider the problem v’ —u = 0, u(0) = 1 with solution
u(t) = e!. We compute with dG(0) keeping the error below .025. Since the
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Fig. 5. Error and stability factor for Example 5

problem is not dissipative, we expect to see the error grow. The difference
U(t) —u(t) is plotted in Figure 5a and the exponential growth rate is clearly
visible. Given a certain amount of computational power, for example, a
fixed precision or a fixed amount of computing time, there is some point in
time at which accurate computation is no longer possible. S;(t) is plotted
in Figure 5b, and we note that it reflects the rate of instability precisely.

8.3. Adaptive error control

An adaptive algorithm based on the a posteriori error estimate takes the
form: determine the time steps k, so that

Se(tn)(Up = Un_1| + kn|f —aUl,) =TOL, n=1,..,N,
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where S'C(t N) = maXj<n<N Sc(tn). This guarantees that
|u(tn) —Un| <TOL, n=1,---N.

As mentioned above, S.(ty) is approximated in an auxiliary computation
solving the backward problem with chosen initial data; see below and [25]
and [8] for more details.

Example 6. We consider a more complicated problem,

o + (.25 + 2msin(2mt))u =0,  t>0,
u(0) =1,

with solution
u(t) = exp(—.25¢ + cos(2nt) — 1).

The unstable solution oscillates as time passes, but the oscillations dampen.
In Figure 6a, we plot the solution together with the dG(0) approximation
computed with error below .12. In Figure 6b, we plot the time steps used
for the computation. We see that the steps are adjusted for each oscillation
and in addition that there is an overall trend to increasing the steps as the
size of the solution decreases.

In addition, the solution has changing stability characteristics. In Figure
7a, we plot the stability factor versus time, and it is evident that the numer-
ical error decreases and increases in alternating periods of time. If a crude
‘exponential’ bound on the stability factor is used instead of a computational
estimate, then the error is greatly overestimated with the consequence that
the computation can only be done over a much smaller interval. To demon-
strate the effectiveness of the a posteriori estimate for error control, we plot
the ratio of the true error to the computed bound versus time in Figure 7b.
The ratio quickly settles down to a constant, which means that the bound
is predicting the behaviour of the error in spite of the fact that the error
oscillates a good deal.

8.4. Quadrature errors

We now consider the error arising from computing the integrals in the dG(0)
method (8.3) approximately using quadrature. We focus on the error from
computing [, 1, f dt using quadrature. To illustrate essential aspects, we con-
sider the midpoint rule,

1
/In Fat R kaf(tyy),  taog = 5(tat +t), (8.21)
and also the rectangle rule,

/1 fdt = knf(tn). (8.22)
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We recall that the backward Euler scheme is generated by using the rectangle
rule. We compare dG(0) approximations computed with the two quadra-
tures (8.21) and (8.22) and conclude that the classical choice (8.22) is less
accurate for many problems. The analysis shows the advantage of separat-
ing the Galerkin and quadrature errors since they accumulate differently.

For the midpoint rule (8.21), the quadrature error on a single interval is
bounded by

\ [ fat—kattt,y)

gmin{/ |kf’|dt,é/ |k2f”|dt}. (8.23)
I, I,
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The corresponding error estimate for the rectangle rule reads

/fdt— ko f(t2) /|kf|dt (8.24)

We notice that the midpoint rule is more accurate unless |f”| >> | f'|, while
the cost of the two rules is the same.

We now determine the effect of quadrature on the final error u(ty) — Un
after N steps. We start with the modified form of the the error representa-
tion

N

2 = nzzl ( /I (f = al)(p = i) it~ [Una)(p = ol
+ [ - feat). (8.25)

where for ¢ € I,, we define f(t) = f (t,— _) for the midpoint rule and f(t) =
f(tn) for the rectangle rule. Introducmg the weak-stability factor

o lpldt
lp(tn)|

we obtain a modified a posteriori error estimate that includes the quadrature
€errors.

Theorem 8 U satisfies for N =1,2,...,

Se(tn) =

. ~ i
[u(t) = Un| < Secltn) Rl 0) + Se(tw)Cos [ WIFP]

where

- Un — Un—
R(U)z———l n kU" 1
n

and j = 1 for the rectangle rule, j = 2 for the midpoint rule, Cq; = 1,
Co2=1/2, fO) = f and f@ = f.

We note that this estimate includes the factor [i¥ k7|f\)|dt that grows
linearly with tx if the integrand is bounded. This linear growth in time,
representing the accumulation of quadrature errors, is also present in the
case a > 0 when S(¢x) < 1. For long-time integration in the case a > 0, it is
thus natural to use the midpoint rule, since the accumulation of quadrature
error can be compensated by the second-order accuracy.

In general, since the computational cost of the quadrature is usually small
compared to the Galerkin computational work (which requires the solution
of a system of equations), the precision of the quadrature may be increased if
needed without significantly increasing the overall work. This illustrates the

+|f—aU‘]n, tel,,
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importance of separating Galerkin-discretization and quadrature errors since
they accumulate at different rates. These errors should not be combined as
happens in the classic analysis of difference schemes, leading to non-optimal
performance.

Example 7. We consider the approximation of u' — .1u = #3, u(0) = 1.
We compute using the dG(0) method, the backward Euler scheme (rectangle
rule quadrature), and the midpoint rule, with accuracies plotted below. The
approximation is plotted in Figure 8a; the problem is not dissipative, so we
expect error accumulation. We plot the errors of the three computations in
Figure 8b. The dG(0) and the dG(0) with midpoint rule approximations
are very close in accuracy, while the backward-Euler computation errors
accumulate at a much faster rate.

8.5. A ‘hyperbolic’ model problem

We consider the ordinary differential equation model for a ‘hyperbolic’ prob-
lem: find v = (u3,u2) such that

ul +aug = f1, t>0,
up —auy = fa, t>0, (8.26)
u1(0) = u10, u2(0) = uo,

where the a = a(t) is a given bounded coefficient with |a| < A, and the f;
and u; are given data. This is a simple model for wave propagation.

We study the application of the cG(1) method to (8.26), where V4 is the set
of continuous piecewise-linear functions v = (v1,v2) on a partition Tj. This
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method takes the form: find U = (Uy, Uz) in Vj, such that for n = 1,2,. ..,

fIn(U{ +CLU2) dt = fIn fl dt,
fIn(Ué —al;)dt = fIn fadt, (8.27)
U1(0) = uio, U2(0) = w20,

corresponding to using piecewise-constant test functions on each interval I,,.
We use piecewise-constant test functions because there are only first-order
derivatives in (8.26), in contrast to the elliptic problem discussed above. In
the case where a is constant, with the notation U;, = U;(t,), the method
(8.27) reduces to:

Uin —Urn-1 + kna(Uan + Ugn-1)/2 = [} frdt,
Usjn — U1 — kna(Urn + U1 n-1)/2 = [} fadt, (8.28)
Ur(0) = wyo, U2(0) = wao,
from which the classical Crank-Nicolson method can be obtained by an
appropriate choice of quadrature. The method ¢G(1) has less dissipation
and better accuracy than dG(0), and it is advantageous to use it in this
problem since the solution is smooth.

8.6. An a posteriori error estimate

To derive an a posteriori error estimate for the error ey = u(ty) — Un,
Un = U(tn), we introduce the dual problem: find ¢ = (¢1, p2) such that
-y +aps = 0,4+ € (0, +N),
—ph—ap1 = 0,+€ (01 +N), (8.29)
o(tn) = en.
Again using Galerkin orthogonality, we obtain an error representation for-
mula:

2 by
len|? = — /0 R-(p - me)dt,

where
Ry =Uj+aUs— fi, Ro=Uj—alUi— fo
and 7, is the nodal interpolation operator into Vj,. Multiplying the equations

by ¢1 and ¢ respectively and using the cancellation of the terms Fay; o,
we obtain the following stability estimates:

0ty le@®ll < llenll

and

/
< .
Jmax [l¢/(0)] < Allew]

Combining the error representation with the strong-stability estimate and
using the interpolation estimate (6.3) we have proved:
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Theorem 9 U satisfies for N =1,2,...,

tn
lu(ty) — Unll < A/O K|[R|| dt.

8.7. An a priori error estimate

The corresponding a priori error estimate takes the form:
Theorem 10

tn
lu(t) = Unll < & [ 160" dt < Aty £ 0.

We note the linear growth of error with time that is characteristic of a
hyperbolic problem.

Example 8. We compute for the problem:

u] + 2ug = cos(wt/3), t>0,
u’2—2u1=0, t>0,
u1(0) = 0, U2(0) = 1,

using the ¢G(1) method with error below .07. The two components of the
approximation are plotted in Figure 9a. This demonstrates that different
components of a system of equations may behave differently at different
times. The error control discussed here must choose the time steps to main-
tain accuracy in all components simultaneously. In Figure 9b, we plot the
stability factor, and the linear growth of error is evident.

9. Nonlinear systems of ordinary differential equations

The framework for a posteriori error analysis described above directly ex-
tends to initial-value problems for nonlinear systems of differential equations
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in R%,d > 1 (or more generally a Hilbert space). The ease of the extension
depends on the definition of the stability factors occurring in the a posteriori
analysis. In the adaptive algorithms built on the a posteriori error estimates,
the stability factors are estimated by computation and not by analysis. Thus
the essential computational difficulty is the approximation of the stability
factors and the essential mathematical difficulty is the justification of this
process. We return to this issue after presenting the extension.
We consider the computation of solutions u = u(t) of the following initial-
value problem:
u'+ f(t,u) = 0, t>0,

0 = . (9.1)

where f(t,-): R — R? is a given function and ug given initial data. We
assume that f and ug are perturbations of correct f and g, and denote by
4 the corresponding exact solution satisfying

@+ ft,a) = 0, t>0,
w(0) = .
We seek an a posteriori error bound for the complete error é = 4 — U,

where U is the dG(0) approximate solution of (9.1) defined by: find U in Wy
such that for all constant vectors v,

(9.2)

/ (U + f(t,U)) - vdt + [Un_1] - v, =0, (9.3)

n

where [v,] = v} — v, v = lims,40v(t, + 8) and U; = 4. With the
notation U, = Ul,, the dG(0) method (9.3) takes the form

Up — Upi +/ ft,U)dE =0, n=1.2,.., (9.4)
I,

where Uy = 1g. Again, this is an improved variation of the classical back-
ward Euler method with exact evaluation of the integral with integrand

f&,U).

9.1. An a posteriori error estimate

To derive an a posteriori error estimate for ey for N > 1 including data,
modelling and Galerkin-discretization errors, we introduce the continuous
dual ‘backward’ problem

— + Ao = 0, te(0,ty),

oin) = én, (9:5)

where

o L
A(t) E/O fu(t,su+ (1 —s)U)ds,
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where f,(t,-) denotes the Jacobian of f(t,-) and * denotes the transpose.
Note that

- 1,
A(t)e = /0 Fult, 50+ (1 — 5)U)éds

and
14 .
/-—ﬂuw+m1—gUyu_ £, 2) — f(5,U).
o ds
Integrating by parts, with || - || denoting the Euclidean norm, we get
N -~
lenl? = llenl+ 3 [ e (=g + Ag)at
n=1v"n
N ) N-1
= Z/J (¢ + A(t)e) - dt + > len] - ¢} +e5 - ©(0)
n=1v1n n=0

- —Z(/ U+ 6,0)) it + Wn-s] i)

043 | 0 - fe0)- pat.
n=1v""n

Now we use Galerkin orthogonality (9.3) to insert 75y in the first term on the
right, and we obtain, since U’ = Qon I,,, the following error representation
formula:

fost? = =3 ( @+ 00 (o= m e+ U] (o mi )

+eg - (0 +Z/ &, U) = f(t,U)) - pdt
N-
= [T H0V) - dt—z (¢ — )i + €5 - 9(0)

tN
+/ F(U) = f(t, 1)) - pdt.

Recalling the interpolation estimate (6.3), we see that

lewl? < /0 /Nt max. (U]l + kall £, Ul

tN ~
Hleg e+ [ kol max 1£¢,U) = FC. Ul
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Finally, we define the strong-stability factor S.(¢x) by

Jo¥ Il lldt
Sc t = 9-6
) = gl 08
and the data and modelling stability factors by
) Jo™ lle(s)llds
Sq(t Sm(n) = ,
= o 5= el

and arrive at an a posteriori error estimate for data, modelling and Galerkin-
discretization errors.

Theorem 11 U satisfies for N =1,2,...,
lu(tn) — Un|| < Sc(tn) ax, k,R(n,U)

+Sa(tn)lldo — uol|
+Sm(ty) max [I(, Un) = £ Un)llz.,

where
R(n,U) = (|Un — Up—1ll/kn + | £ (-, Un)|I1,-

Remark 6 There is a corresponding a priori result with stability factors
related to discrete dual problems.

9.2. Computational evaluation of stability factors

To give the a posteriori estimate concrete meaning, the stability factors have
to be determined. Accurate analytic estimates are possible only in a few
special cases, and in general we resort to numerical integration of the dual
linearized problems. The critical mathematical issue is the reliability of this
evaluation, since this directly translates into the reliability of the adaptive
algorithm. The basic sources of error in the computational evaluation of
stability factors are (i) the choice of linearization and (ii) the choice of
data, and (iii) the numerical solution of the dual linearized problem. In
practice, the problem is linearized around an approximation rather than the
mean value that involves the unknown exact solution used in the definition
of the dual problems. Moreover, the current error is unknown, and hence
the true initial data for the dual problems cannot be used. Finally, the
resulting problem must be approximated numerically. The reliability of the
computation of stability factors related to (i) and (ii) may be guaranteed for
certain classes of problems but in the general case, little is known. Reliability
with respect to (iii) seems to be an issue of smaller magnitude.

In many experiments, (see Estep (to appear), Estep and French, (to ap-
pear), Eslep and Johnson (1994)), we have seen that the choice of initial
data in the dual problem is often immaterial provided the time interval is
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Fig. 10. Two views of a solution of the Lorenz system

sufficiently long. Otherwise, computing dual problems using several different
initial values improves reliability. Moreover, unless grossly inaccurate, ap-
proximate trajectories seem to provide reasonably accurate stability factors.

Example 9. In the early 1960s, the meteorologist E. Lorenz presented
a simple model in order to explain why weather forecasts over more than
a couple of days are unreliable. The model is derived by taking a three-
element Fem space discretization of the Navier—-Stokes equations for fluid
flow (the ‘fluid’ being the atmosphere in this case) and simply ignoring the
discretization error. This gives a three-dimensional system of ODE’s in time:

' = —ox + oy, t>0,
Yy =—-rr—y-—zxz, t >0,
2 = —bz + xy, t>0, (9.7)

z(0) = z0,y(0) = yo, 2(0) = 2,

where o,r and b are positive constants. These were determined originally
as part of the physical problem, but the interest among mathematicians
quickly shifted to studying (9.7) for values of the parameters that make the
problem chaotic.

A precise definition of chaotic behaviour seems difficult to give, but we
point out two distinguishing features: while confined to a fixed region in
space, the solutions do not ‘settle down’ into a steady state or periodic state;
and the solutions are data sensitive, which means that perturbations of the
initial data of a given solution eventually cause large changes in the solu-
tion. This corresponds to the ‘butterfly effect’ in meteorology in which small
causes may sometimes have large effects on the evolution of the weather. In
such situations, numerical approximations always become inaccurate after
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Fig. 11. Stability factors and error bound for the Lorentz system

some time. An important issue is to determine this time, since, for example,
it is related to the maximal length of a weather forecast.

We choose standard values o = 10, b = 8/3 and r = 28, and we compute
with the dG(1) method. In Figure 10, we plot two views of the solution
corresponding to initial data (1,0,0) computed with an error of .5 up to
time 30. The solutions always behave similarly: after some short initial
time, they begin to ‘orbit’ around one of two points, with an occasional
‘flip’ back and forth between the points. The chaotic nature of the solutions
is this flipping that occurs at apparently random times. In fact, accurate
computation can reveal much detail about the behaviour of the solutions;
see Eriksson et al. (1994b).

Here, we settle for demonstrating the quality of the error control explained
in these notes. In Figure 11a, we plot the approximate stability factors on
a logarithmic scale. The data sensitivity of this problem is reflected in the
overall exponential growth of the factors, and it is clear that any computa-
tion becomes inaccurate at some point. The error control allows this time
to be determined. Note, however, that the factors do not grow uniformly
rapidly and there are periods of time with different data sensitivity. It is
important for the error control to detect these to avoid gross overestimation
of the error. To test this, we do an experiment. We compute using two error
tolerances, one 107° smaller than the other, and then we subtract the less
accurate computation from the more accurate computation. This should be
a good approximation to the true error (which is unknown of course). In
Figure 11b, we plot this approximate error together with the error bound
predicted by the error control based on a posteriori estimates as we have
described. There is remarkable agreement.

Finally, in Figure 12a, we plot the S, for the various trajectories computed
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with different tolerances. Overall, the stability factors are roughly the same
order of magnitude for all trajectories. The stability factors agree as long as
the trajectories are near each other, but variations occur as some trajectories
enter more data-sensitive areas than others at the same time. In Figure 12b,
we plot the approximation to S; computed for three different choices of initial
data for the dual problem (9.5).

10. An elliptic model problem in two dimensions

In this section, we consider Fem for Poisson’s equation in two dimensions.
We discuss a priori and a posteriori error estimates for the Galerkin-
discretization error and also the discrete-solution error for a multigrid
method, and design corresponding adaptive methods. The analysis is largely
parallel to that of the one-dimensional model problem, though the analysis
of the multigrid method is more technical.

Consider the Poisson equation with homogeneous Dirichlet boundary con-
ditions: find u = u(x) such that

—Au

u pumeg

S, zed, (10.1)

T € 99,

where Q is a bounded domain in R? with boundary 89, = = (z1,x2), A is
the Laplace operator and f = f(x) is given data. The variational form of
(10.1) reads: find u € H}(€2) such that

(Vu, Vo) = (f,v), Yve H}(Q), (10.2)

where (w,v) = [quwvdz, (Vw,Vv) = [Vw - Vvdz and H}(Q) is the
Sobolev space of square-integrable functions with square integrable deriva-
tives on (2 that vanish on 8. We recall that ||V - ||2 is a norm in HJ ()
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that is equivalent to the H1(Q2) norm. The existence of a unique solution
of (10.2) follows by the Riesz representation theorem if f € H~1(Q), where
H~Y(Q) is the dual space of H}(Q) with norm

N1 = sup (f,v).
vEHG (D), Vll2=1
We recall strong-stability (or elliptic regularity) estimates for the solution
of (10.2) to be used below. The estimates are termed ‘strong’ because
derivatives of the solution u are estimated. We use the notation D% = v,
1
D'y = |Vv| and D%y = (Zle(%avmjf)i. Further, we use || - || = || - || to
denote the L?(2) norm.

Lemma 3 The solution u of (10.2) satisfies

IVull < [ flla-1@)- (10.3)

Furthermore, if € is convex with polygonal boundary, or if 02 is smooth,
then there is a constant S independent of f, such that

|1 D%u| < Scll £l (10.4)

If © is convex, then S, = 1.

10.1. Fem for Poisson’s equation

The simplest Fem for (10.1) results from applying Galerkin’s method to the
variational formulation (10.2) using a finite-dimensional subspace V;, H}(f)
based on piecewise-linear approximation on triangles. For simplicity, we
consider the case of a convex polygonal domain. Let Tp, = {K} be a finite-
element triangulation of € into triangles K of diameter hx with associ-
ated set of nodes N = {N} such that each node N is the corner of at
least one triangle. We require that the intersection of any two triangles
K’ and K" in T, be either empty, a common triangle side or a common
node.

To the mesh T} we associate a mesh function h(z) satisfying, for some
positive constant ¢,

ahk <h(z)<hg, VreK, VKecT,. (10.5)
We further assume that there is a positive constant co such that
coh? < 2|K|, VK €Th. (10.6)

This is a ‘minimum angle’ condition stating that angles of triangles in T}
are bounded from below by the constant cz. As usual, C; denotes an inter-
polation constant related to piecewise-linear interpolation on the mesh T,.
In this case, C; depends on ¢; and ¢z, but not on h otherwise.
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With Vj, € H}(€) denoting the standard finite-element space of piecewise-
linear functions on T}, the Fem for (10.1) reads: find upn € V}, such that

(Vup, Vo) = (f,v), Vv € V. (10.7)

Galerkin orthogonality for (10.7), resulting from (10.2) and (10.7), takes the
form:

(V(u—up),Vv) =0, VYve V. (10.8)

We write up, = Eij‘il &ii, where {;} is the usual basis for V}, associated
to the set of nodes N = {N;}M, in the interior of Q and & = uy(IV;). Then,
(10.7) is equivalent to the linear system of equations

AL =b, (10.9)

where ¢ = (§)M,, A= (aij)%zl is the M x M stiffness matrix with elements
aij = (Vgi, Vy;) and b = (bj)é\il is the load vector with b; = (f, ;). We
use a multigrid method to solve the discrete system (10.9), producing an
approximation uy € Vj, of the exact discrete solution up.

We require an error estimate for interpolation by piecewise-linear func-
tions, where the piecewise-linear nodal interpolant 7w € V3 of a given
function w € H(Q2) N H%(SY) is defined by mw(N) = w(N), VN € Np.
We also need an analogous estimate for a ‘quasi-interpolant’ of w € H} ()
that requires less regularity where the ‘quasi-interpolant’ interpolates local
mean values of w over neighbouring elements. We use the same notation
for the nodal interpolant and the quasi-interpolant. The basic interpolation
estimate is:

Lemma 4 For s < m+ 1, m € {0,1}, there are constants C; depending
only on c¢; and cp such that for w € H§(Q2) N H™F1(Q)

1/2
|h=™ 2 D® (w — mpw) || + ( Y A - th“%K) < G | D™ ).
KeTy,

10.2. The discrete and continuous residuals

We shall prove an a posteriori error estimate for the total error e = u —
Up = u — up + up — Uy including the Galerkin-discretization error u — up
and the discrete-solution error up — 4. The a posteriori error estimate
involves both a discrete residual Rj (1) related to solving the discrete system
(10.7) approximately and an estimate R(up) of the residual related to the
continuous problem (10.1).

To define Ry, (i), we introduce the L2-projection Py : L?(2) — V}, defined
by (v — Pyu,v) =0, Yv € V},, and the ‘discrete Laplacian’ Ap: V — V,,
on Vj, defined by (Apw,v) = —(Vw,Vv), Vou,w € V}. We may then write
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(10.7) equivalently as Rp(up) = 0, where for w € V;, the discrete residual
Rp(w) is defined as

Rp(w) = Apw + Py f. (10.10)
For the approximate solution 4@y, we have Ry (4p) # 0.

Remark 7 Letting Uj, denote the nodal-valued vector of the approximate
solution @y, we define the ‘algebraic’ residual rp(Up) by m,(Up) = b — AU,
By the definition of Rp(@p), it follows that rh(Uh) = Mth(ﬁh), where
My, = (mij)%:l is the mass matrix with elements m;; = (¢;, ¢;) and Rh(ﬂh)
is the nodal-valued vector of R(#y). Thus, Ry(iy) is computable from the
algebraic residual 7, (U},) by applying M, 1, In practice, My may be replaced
by a diagonal matrix corresponding to ‘mass lumping’.

The estimate R(#p,) for the continuous residual is defined on each element
K €Ty by

R(ay) = |f + Atp| + D?aiy,, z € K, (10.11)
where for v € V},
1
Div|g = ——||h L[V , 10.12
hle 2\/@“ K [ U]”@K ( )

where [Vv] denotes the jump in Vv across K. Note that D? resembles a
second derivative in the case of piecewise-linear approximation when Vv is
constant on each element K. The factor 1/2 arises naturally because the
jump is associated to two neighbouring elements. We note that D%v is a
piecewise-constant function and thus in particular belongs to L?(€2).

The residual function R(@4) also belongs to L2(2) and has two parts: the
‘interior’ part | f + Adip| and the ‘boundary’ part D2d;,. The boundary part
can be made to vanish in the one-dimensional problems considered above,
because the interpolation error vanishes at inter-element boundaries. In
the present case with piecewise-linear approximation, R(up) = |f| + D,%uh,
x € K, while in the case of higher-order polynomials, Auy no longer vanishes
on each triangle and has to be taken into account.

In the proofs below, we use the following crucial estimate:

Lemma 5 For m € {0, 1}, there is a constant C; such that Yv € H}(f2) N
H™H(Q),

|(f,0 = o) = (Vig, V(v — mo))| < GIIR™ R(@@p)[[[|D™ 1o, (10.13)

Appropriate values of the constant C; in (10.13) can be calculated ana-
lytically or numerically. If ¢; ~ 1 and ¢z ~ 1, then Cj ~ 0.2 for m = 0,1 (cf.
Johnson and Hansbo (1992b), Becker et al. (1994)).
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Proof. By integration by parts, observing that v — mpv is continuous, we
have
(fiv—m) — (Vi V(v = mhv))
= Y {(f+ At v — mpv)k — (Onith,v — Th)oK }
KeTy
_ 1, .
= 3 {(f + Adlp, v — TRV) K — 5([Vuh] U — Whv)ax} ,
KeTy

with [Vay] denoting the jump of Vi, across the element edges, from which
the result follows by Lemma 4. O

10.3. A priori estimates of the Galerkin-discretization error

We first give an a priori error estimate of the Galerkin-discretization error
u — up, in the energy norm.

Theorem 12 There exists a constant C; depending only on ¢; and ¢3 such
that
IV (u = )|l <[V (4~ mpu)|| < CillhD?ul]. (10.14)
Proof. In (10.8), we choose v = U — mpu and use Cauchy’s inequality to
get
IVel2 = (Ve,V(u—U)) = (Ve,V(u—U)) + (Ve, V(U — mhu))
= (Ve,V(u—mu)) < |[Vel[ |V (u — mru),
(10.15)
from which the desired result follows from Lemma 4. O
We next give an a priori error estimate in the L? norm.

Theorem 13 There exists a constant C; only depending on ¢; and ¢ such
that

lu— Ul < 5.Ci||hV (u - U)|, (10.16)
where
_ 1Dl
T ger2 gl

with ¢ € H} () satisfying —Ag = g in Q. Further, if |Vh(z)| < p, z € Q,
with u a sufficiently small positive constant, then

|hV (u — U)|| < Ci||h2D?ul, (10.17)
where C; now depends also on pu.

Proof. The proof of (10.16) uses duality in a manner similar to that of the
proof of Theorem 4. Note that (10.17) follows directly from the energy-norm
error estimate if h is constant. O
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10.4. A posteriori error estimates of Galerkin and discrete-solution errors

We now turn to a posteriori error estimates, including the discrete-solution
error in the case of multigrid methods. Let Tj, j = 0,1,2,...,k, be a hi-
erarchy of successively refined meshes with corresponding nested sequence
of finite-element spaces V; and mesh functions h;, where the final mesh T}
corresponds to the mesh T} in the above presentation. We seek to compute
an approximation iy € Vj of the finite-element solution u; € Vi on the final
mesh T}, using a multigrid algorithm based on the hierarchy of meshes. For
J €{0,...,k}, define the residual R;(ix) € V; related to the mesh T; by the
relation

R;(ux) = Pi(f + Dgtix), (10.18)

where P; is the L2-projection onto V; and Ag : Vi — Vi is the discrete
Laplacian on V.

The multigrid algorithm consists of a sequence of smoothing operations
V; — V; (e.g. Jacobi, Gauss—Seidel or ILU iterations) on the different
meshes T}, which are together with grid transfer operations (prolongations
and restrictions). The objective of the multigrid algorithm is to make the
residual Ry (@) on the final mesh T} small, which is realized in a hierarchical
process that also makes the residuals R;(4@) small for j = 0,1,...,k — 1.
We assume that Ry(@x) = 0, which corresponds to solving the discrete
equations exactly on the coarsest mesh. The details of the multigrid method
are immaterial for the a posteriori error estimate to be given.

We now state and prove the a posteriori error estimate and then briefly
discuss a corresponding adaptive algorithm.

Theorem 14 For m € {0,1}, there are constants C; and Sc such that,
if u is the solution of (10.1) and @y € Vi is an approximate finite-element
solution with Ro(ug) = 0, then

k
D™ (u — k)| < ScCi {Ilhﬁ_mR(ﬂk)ll +Y IIhﬁiinRj(ﬂk)ll} - (10.19)
=1
Ifm=1,orif m=0and Q is convex, then 5. = 1.

Proof. For m = 0or m = 1, let ¢ € H}(2) be the solution to the dual
continuous problem

(Vu, Vi) = (D™, D™e), Vv € H}(Q).
Taking v = e, we obtain the error representation

ID™e||? = (Ve, V) = (f,9) = (Va, Vi) = (r(t), ¢) -
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For j < k, we have the telescoping identity
k
(r(@), ) = (r(@x), o — mep) + >_(r(ix), mjp — mi—10) + {r(ix), moep) ,
=1
where 7; denotes the interpolation operator into V; related to the mesh Tj.
Observing that for v € V}, since V; C V4,

<7'(11k), ’U) = (‘P](f + Akﬁk)) U) = (Rj(ﬂk)7v)v
and that Rg(@x) = 0 by assumption, we reduce this to
k
(r(@x), @) = (r(ix), o — mep) + Y (R;(T), o — mi-19)
j=1
Hence, we obtain using Lemma 4 and Lemma 5

ID™el|? < Ci {llhi’mR( WDl +Zl|h2 1R )HIlDz""wll}

from which the assertion follows using Lemma 3. 0

Remark 8 For the exact solution up of the finite-element equation (10.7),
the a posteriori error estimate has the familiar form

I1D™(u — @) || < ScCill kg™ R(an) . (10.20)

Remark 9 The effect of round-off in the computation of the discrete so-
lution #x may be taken into account as follows: Suppose the multigrid com-
putation is carried out in single precision. The a posteriori error estimate
is valid if the residuals R(d@x) and R;(ik), j =0,1,...,k, are evaluated ex-
actly. In practice, this means in double precision. We can also add the term
|| Ro(tx)| to take into account that Ro(d@x) = 0 in single precision only. If the
a posteriori error estimators evaluated in single and double precision differ
by more than the chosen tolerance, then the entire computation should be
redone in double precision.

11. Adaptive algorithms

The stopping criterion of an adaptive algorithm based on Theorem 14 takes
the form

k
S.Ci max (Z ||h TR ()|l ||h2 mR(uk)H) TOL (11.1)
=1

which ensures that the Galerkin-discretization and the discrete-solution er-
rors are equilibriated. The form of the stopping criterion for the discrete-
solution error suggests how to monitor the smoothing process on the different
levels to make the different residuals R;(i) appropriately small.
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11.1. A posteriori error estimates in the L=(Q) norm

We now give an a posteriori error estimate for the Galerkin-discretization
error u — up in the L*°(Q) norm || - ||co-

Theorem 15 There is a constant C; such that
[ — tnlloo < SeLKCillh>R(un) oo, (11.2)

with Sc = max g || log(] — y|) D%y |l1, where 1, is the Green’s function
for A on Q with pole at y € Q, and Ly = (1 + log(1/hmin)), where Ay is
the minimal mesh size of Ty. There is a constant C such that S, < C for
all polygonal domains €2 of diameter at most one.

Proof. The proof is based on the following error representation:

(u — up)(y) = /Q f(apy — mnapy) dz — /Q Vup - V(b — hthy) da,

from which the desired estimate follows by arguments analogous to those
used above. O

Example 10. We now present results obtained using adaptive algorithms
based on Theorem 15 for L control and Theorem 14 for energy-norm con-
trol with m = 1 and S; = 1, where 2 is the L-shaped domain (—1,1) x
(—1,1) \ (0,1) x (—1,0). We consider a case with an exact solution u with
a singularity at the nonconvex corner, given by u(r, ) = r3 sin(%&) in polar
coordinates.

In the case of maximum-norm control, the stability factor S. is determined
by computing approximately v, for some sample points y. In this case
apparently, a few choices of y are sufficient. The interpolation constant
is set to C; = 1/8. In Figure 13, we present the initial mesh (112 nodes
and 182 elements) and the level curves of the exact solution. In Figure
14, we show the final mesh (217 nodes and 382 triangles) produced by the
adaptive algorithm with TOL = 0.005. Figure 15 shows the variation of the
efficiency index and the stability constant S, as functions of the number of
refinement levels. The efficiency index, defined as the ratio of the error to
the computed bound, increases slightly from the coarsest to the finest grid.
In Figure 16, we show the final mesh (295/538) using energy-norm error
control with TOL = 0.005. Note that the final meshes in the two cases are
considerably different.

12. The heat equation

We briefly consider the extension of the results for the scalar equation u’ +
au = f with a > 0 given above, to the heat equation, the standard model
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Fig. 13. Original mesh and isolines of the solution on a fine mesh
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Fig. 14. Maximum-norm control of the error

problem of parabolic type: find v = u(z,t) such that

ug — Au = f, (z,t) e A x I,
u =0, (x,t) € O x I, (12.1)
U = Ug, era

where Q is a bounded polygonal domain in R2, I = (0,7) is a time interval,
us = Ou/0t and the functions f and wug are given data.

For discretization of (12.1) in time and space we use the dG(r) method
based on a partition 0 = g < {1 < - < tp < -+ <ty =T of I and
associate with each time interval I,, = (¢,—1, t,] of length k, = ¢, —t,_1 a
triangulation T, of £2 with mesh function A, and the corresponding space
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Fig. 15. Stability constant and efficiency index on the different refinement levels

Vi, € H} () of piecewise-linear functions as in Section 5. Note that we allow
the space discretizations to change with time. We define

r
Vin = {v v = thipj, @; in Vn},

=0

and discretize (12.1) as follows: find U such that for n = 1,2,..., Ulaxs, €
Vin and

/I {(Utav)+(VU1 V’U)}dt_}_([U]'n—l,v:—l) = /I (f,’l))dt, Vv € ‘/r'm (122)
where [w], = w} — wy, wi) = lim,_,g+-) w(t, +s) and Uy = uy.

As above, if 7 = 0, then (12.2) reduces to a variant of the Euler back-
ward method, and for r = 1 it reduces to a variant of the subdiagonal
Padé scheme of order (2,1), that is third-order accurate in U,; at the nodal
points 5.

The a posteriori error estimate in the case r = 0 has the form

lu(tn) - Unlls < GiLy_max (IWZR(UR)I + Un-1]]l + IAZES ]I,

(12.3)
where R(U) is defined by (10.11), Ly = maxnzl,.__,N(l-f—log(%f:))% is a loga-
rithmic factor and the starred term is present only if the space mesh changes
at time t,_;. The analogous a priori error estimate assuming h% <k,
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Fig. 16. Energy-norm control of the error

takes the form
lu(ty) — Unll < GiLn njglaXN(HhiDzuHIn + [\knutll1, ), (12.4)

An adaptive algorithm may be based on (12.3). We note the optimal char-
acter of (12.4) and (12.3), that in particular allows long-time integration
without error accumulation.

13. References

We give here a brief account of the current status of the development of
the framework for adaptive approximation of differential equations that we
have described. We also give some references to the extensive literature on
adaptive methods that are of particular relevance for our work.

Adaptive methods for linear elliptic problems with energy-norm control
were first developed by Babuska et al. (see Babuska (1986) and references
therein) and Bank et al. (see Bank (1986)). In both cases, a posteriori error
estimates were obtained by solving local problems with the residual acting
as data. Residual-based a posteriori energy-norm error estimates were also
derived for Stokes’s equations in Verfiirth (1989).

The basic approach we use for adaptive methods for linear elliptic prob-
lems, including a priori and a posteriori error estimates in H!, L? and L®
norms, is presented in Eriksson and Johnson (1991) and Eriksson (to ap-
pear). Extensions to adaptive control of the discrete-solution error using
multigrid methods is developed in Becker et al. (1994). Nonlinear ellip-
tic problems including obstacle and plasticity problems are considered in
Johnson (1992a), Johnson and Hansbo (1992a) and Johnson and Hansbo
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(1992b). Recently, applications to eigenvalue problems have been given in
Nystedt (in preparation).

Early a posteriori error analysis for ordinary differential equations was
used in Cooper (1971) and Zadunaisky (1976). These approaches are quite
different from ours. We develop adaptive global error control for systems of
ordinary differential equations in Johnson (1988), Estep (to appear), Estep
and French (to appear), Estep and Johnson (1994), and Estep and Williams
(in preparation). Lippold (1988) had an influence on our early work.

The series Eriksson and Johnson (1991), Eriksson and Johnson (1994a, b,
¢, d), (to appear), Eriksson, Johnson and Larsson (1994) develops adaptive
Fem for a class of parabolic problems in considerable generality including
space-time discretization that is variable in space-time, and applications to
nonlinear problems.

Adaptive Fem for linear convection—diffusion problems is considered in
Johnson (1990), Eriksson and Johnson (1993) and Eriksson and Johnson (to
appear). Extensions to the compressible Euler equations are given in Hansbo
and Johnson (1991) and Johnson and Szepessy (to appear). Extensions to
the Navier—Stokes equations for incompressible flow are given in Johnson, et
al. (to appear), Johnson and Rannacher (1993) and Johnson, et al. (1994).
Second order wave equations are considered in Johnson (1993).

The presented framework also applies to Galerkin methods for integral
equations. An application to integral equations is given in Asadzadeh and
Eriksson (to appear). The potential of the framework is explored in
Carstensen and Stephan (1993).

14. Conclusion, open problems

The framework for deriving a posteriori error estimates and designing adap-
tive algorithms for quantitative error control may be applied to virtually
any differential equation. The essential difficulties are (i) the computational
estimates of stability factors and (ii) the design of the modification strategy.
The reliability depends on the accuracy of the computed stability factors
and may be increased by increasing the fraction of the total work spent on
stability factors. Optimization of computations of stability factors is an im-
portant open problem. Optimal design of the modification criterion is also
largely an open matter for complex problems. Thus, the contours of a gen-
eral methodology for adaptive error control seem to be visible, but essential
concrete algorithmic problems connected mainly with (i) and (ii) remain to
be solved. The degree of difficulty involved depends on the features of the
underlying problem related to, for example, stability and nonlinearities.
The concept of computability as a measure of computational complexity
is central. A basic problem in mathematical modelling is to develop mathe-
matical models for which solutions are computable. A basic problem of this
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form is turbulence modelling. Isolating computational errors from mod-
elling errors gives the possibility of evaluating and improving the quality of
mathematical models.

To sum up, it appears to be possible to develop reliable and efficient
adaptive computational software for a large class of differential and integral
equations arising in applications, which could be made available to a large
group of users from calculus students to engineers and scientists. If such a
program can be successfully realised, it will open up entirely new possibilites
in mathematical modelling.

15. How to obtain Femlab and ‘Introduction to Numerical
Methods for Differential Equations’

Femlab contains software for solving: (i) one dimensional, two point bound-
ary value problems (Femlab-1d); (ii) initial value problems for general sys-
tems of ordinary differential equations (Femlab-ode); and two dimensional
boundary valve problems (Femlab-2d). Femlab, together with the educa-
tional material Eriksson et al. (1994), can be obtained over the Internet.
Femlab-ode can be obtained by anonymous ftp to

ftp.math.gatech. edu.

Change to directory /pub/users/estep and get femlabode.tar. This tar
file contains the codes and a brief user’s manual. In that same directory is
intro.ps.Z, a compressed postscript version of Eriksson et al. [1994).

To obtain Femlab-1d and Femlab-2d open to the WWW (World Wide
Web) address

http://www.math.chalmers.se/ kenneth
using (for instance) the Mosaic program. There is a README file located
there that gives further instructions.

Femlab-1d consists of a number of Matlab script files and M-files. You
can import these files using the ‘save as ...” command under the ‘file’ menu.
To run the code, you then just start your local Matlab program and give
the command adfem, calling the script file adfem.m. For more details, see
the README file.
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